Proofs, Set Theory, Natural Numbers, and Integers

Sept 2022

1. Use our definitions of integer even and odd parities to prove the following properties, given $x, y \in \mathbb{Z}$, where x is even and y is odd (assume exponential properties of integers are given):
a. Prove $x+y$ has odd parity.
b. Prove x^{2} has even parity.
c. Prove $x y$ has even parity
d. Prove y^{x} has odd parity (where $\mathrm{F}=\mathrm{N}$).
e. Prove x^{y} has even parity (where $\mathrm{F}=\mathrm{N}$).
2. Prove the following statements about sets:
a. $X \backslash A^{c}=A$, where $A \subset X$
b. $|\emptyset|=0$, by logic
c. If $P(A) \subset P(B)$, then $A \subset B$
d. $A \times(B \cap C) \subseteq(A \times B) \cap(A \times C)$
e. $(A \cup B)^{c}=A^{c} \cap B^{c}$
f. Prove \emptyset is unique
h. Prove $A+A=A$ given our definition of Minkowski addition
3. Let $A \times B \subseteq B \times C$. Prove $A \subseteq C$. Which condition does this not hold?
4. Using the field axioms of real numbers, prove the following statements:
a. If $x+y=x+z$ then $y=z$
b. If $x+y=x$ then $\mathrm{y}=0$
c. If $x+y=0$ then $y=-x$
d. $-(-x)=x$
5. Carefully prove the quadratic formula using the real field axioms.
6. Prove \mathbb{N} is not a field
7. What does it mean for a set to be ordered? Give three examples of an ordered set and list two properties you might encounter with ordered sets in general.
8. Prove that $\sqrt{3}$ cannot be represented by a rational number.
9. Represent the entirety of real numbers using set builder notation.
10. Take the repeated power set of the empty set. Which number set does this represent?
