Proofs, Set Theory, Natural Numbers, and Integers

Sept 2022

- 1. Use our definitions of integer even and odd parities to prove the following properties, given $x, y \in \mathbb{Z}$, where x is even and y is odd (assume exponential properties of integers are given):
 - a. Prove x + y has odd parity.
 - b. Prove x^2 has even parity.
 - c. Prove xy has even parity
 - d. Prove y^x has odd parity (where F = N).
 - e. Prove x^y has even parity (where F = N).
- 2. Prove the following statements about sets:
 - a. $X \setminus A^c = A$, where $A \subset X$
 - b. $|\emptyset| = 0$, by logic
 - c. If $P(A) \subset P(B)$, then $A \subset B$
 - d. $A \times (B \cap C) \subseteq (A \times B) \cap (A \times C)$
 - e. $(A \cup B)^c = A^c \cap B^c$
 - f. Prove \emptyset is unique
 - h. Prove A + A = A given our definition of Minkowski addition
- 3. Let $A \times B \subseteq B \times C$. Prove $A \subseteq C$. Which condition does this not hold?
- 4. Using the field axioms of real numbers, prove the following statements:

a. If x + y = x + z then y = z
b. If x + y = x then y = 0
c. If x + y = 0 then y = -x
d. -(-x) = x

- 5. Carefully prove the quadratic formula using the real field axioms.
- 6. Prove \mathbb{N} is *not* a field.
- 7. What does it mean for a set to be ordered? Give three examples of an ordered set and list two properties you might encounter with ordered sets in general.
- 8. Prove that $\sqrt{3}$ cannot be represented by a rational number.
- 9. Represent the entirety of real numbers using set builder notation.
- 10. Take the repeated power set of the empty set. Which number set does this represent?