09/19 Lecture 1

Monday, September 19, 2022

What do you want to get out of/see in math club?

- Operates as a structured "course"
- level STEM academia lectures
- Review lectures (from previous math courses)
- Problem solving within groups
- Applied math- relevant to STEM majors
- AMATYC https://amatyc.org/page/StudentMathLeague

Lecture - Introduction to Real Analysis

- Proof Definition
- Proofs by Contradiction
- Even-Odd PROOF
- Sets Definition and Properties
- Set Symbols and Examples

What is a Proof?

"It P, then Q" condition Ly "platonic" role of mathematics

Proofs by Contradiction-

"I Suppose * It's * true"

* doing some math *

I

It Statement
$$\longrightarrow$$
 \longleftarrow * hegating it * statement

example: $\chi = 3 = 4$ (χ can NOT equal 3 AND 4 @)

the SAME time

: * * Hhis* is a contradiction

Fren-Odd PROOF

$$X,Y \in \mathbb{Z}^{+} = \{0,1,2,...,n\};$$

$$\chi$$
 is even, $\chi = 2 \cdot n$; y is odd, $y = 2n + 1$

Prove: $\chi \cdot y = even$

: Aside:

// symbol for integers

if
$$\chi, y \in \mathbb{Z}^{-}$$

→ y is still odd BUT y=2n-1

PROOF: if x is even, x=2n, and y is odd, y=2m+1; $\forall n, m \in \mathbb{Z}^+ \cup 0$

·· X, y will always be even \n,m

What are sets?

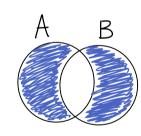
a set, A, is a collection of objects

objects can be any "thing' 4 in math, Objects are #s, Points, Functions, etc.

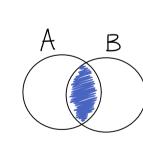
properties $-1ct A = B SO, A = \{a_1, a_2, ..., a_n\}$ $B = \{b_1, b_2, ..., b_n\}$ ⇒ A = B iff ai = bi Y duments in A, B -let $A = \{a_1, a_2, ..., a_j, ..., a_{n-1}, a_n\}$

= $\{a_1, a_2, \dots, a_{j_1}, \dots, a_{n-1}, a_n\}$

: Aside := treated as an assignment (similar to using one = symbol rather than two == symbols in Some CP langauges) an asymmetrical relationship


Set symbols/Notation

- Empty Set:
$$\emptyset = \xi$$
 3
 $\xi\emptyset3 = \xi\xi33$


- Singleton Set: a set containing 1/2 object ex: {1}

- Subset: let A, B be sets

- Union of two sets:

- Intersection:

- Cardinality:

examples:

$$- |\xi|,33| = 2 - |0| = 0$$

$$- |N| = \xi|,z,3,...3 = \chi_0$$
Aside

N symbol for hatural #s

$$- \left| N \right| = \left\{ 1, 2, 3, \dots, \right\} = \lambda$$

- Xo "Aleph Null" Symbolizes the Size of an infinite collection of Objects w/ an infinite amount or elements \Rightarrow a continuum

- R symbol for Real #s